If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2=258
We move all terms to the left:
9x^2-(258)=0
a = 9; b = 0; c = -258;
Δ = b2-4ac
Δ = 02-4·9·(-258)
Δ = 9288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9288}=\sqrt{36*258}=\sqrt{36}*\sqrt{258}=6\sqrt{258}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{258}}{2*9}=\frac{0-6\sqrt{258}}{18} =-\frac{6\sqrt{258}}{18} =-\frac{\sqrt{258}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{258}}{2*9}=\frac{0+6\sqrt{258}}{18} =\frac{6\sqrt{258}}{18} =\frac{\sqrt{258}}{3} $
| u/11=2u= | | 5x2−20x=0 | | 4x+8=6x–1 | | 6d+3=4d+9 | | (3x-11)+(8x-9)+(3x+12)=180 | | 5(x-5)=19.5 | | 6(a+3)=61.8 | | 3y+4=8y-11 | | x/8=3/8 | | (2x+2)+(2x-7)=180 | | 2{x=4}=6 | | 2.4=4c-6 | | 8e-4=11.2 | | 36+9=(x+5) | | 4=4(x+10=) | | 4=4(x+1=) | | k+3=6.9 | | 149t-16t^2+110=0 | | 5(3-3x)=16 | | 4(c-5)=14 | | 2.5t=10t= | | 5x/3+12=22 | | 3y+4=y-10. | | 13x-7=6x-63x= | | 4(p-5)=15 | | 8x+3=4x-21=x= | | 2x=100- | | 10x-8=3x+13=x= | | 8x-3=5x=15= | | (x+3)(x-7)=3x-21 | | 4*3-2*1=x | | 10x=72−2x |